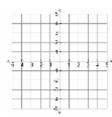
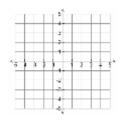

Let's refresh our memory about graphing linear equations!


Graph
$$y = -\frac{2}{3}x + 2$$

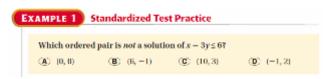

$$Graph |3x - 4|v = 8$$

Graph x = 5

Graph
$$v = -3$$

Oct 30-4:18 PM

Your Turn!

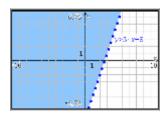

You Try:

Tell whether the ordered pair is a solution of -x + 2y < 8.

- **a)** (0, 0)
- **b)** (0, 4)
- (c) (3, 5)

6.7 Graph Linear Inequalities in Two Variables

Deciding whether an ordered pair is a solution of a linear inequality.

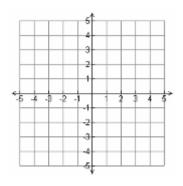


Oct 20-2:43 PM

Let's go over some important definitions:

DEFINITION:

In a coordinate plane, the graph of an inequality in two variables is the set of all points that represent all solutions of the inequality.

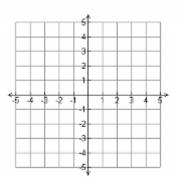

DEFINITION:

The boundary line of a linear inequality divides the coordinate plane into two half-planes. Only one half-plane contains points that represent the solutions of the inequality.

Graph a linear inequality in two variables. [Boundary is in slope-intercept form]

EXAMPLE 2 Graph a linear inequality in two variables

Graph the inequality y > 4x - 3.

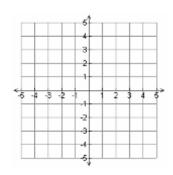


Oct 6-4:31 PM

Graph a linear inequality in two variables. [Boundary is in standard form]

EXAMPLE 3 Graph a linear inequality in two variables

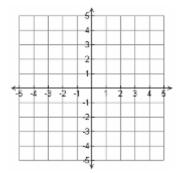
Graph the inequality $x + 2y \le 0$.



Your Turn!

You Try:

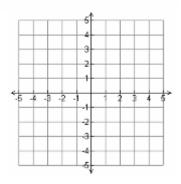
Graph the inequality



Oct 6-4:33 PM

Your Turn!

You Try:


Graph the inequality $x + 3y \ge -1$

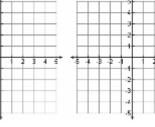
Graph a linear inequality in one variable.

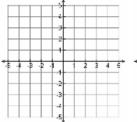
EXAMPLE 4 Graph a linear inequality in one variable

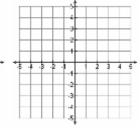
Graph the inequality $y \ge -3$.

Oct 6-4:33 PM

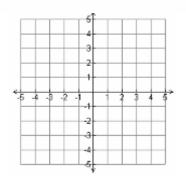
Your Turn!


b) x < -2


You Try:


Graph the inequality.

a) $y \leq 3$



(c) y > 1

Graph a linear inequality in one variable.

EXAMPLE 5 Graph a linear inequality in one variable

Graph the inequality x < -1.

Oct 30-4:38 PM

Solve a multi-step problem.

EXAMPLE 6 Solve a multi-step problem

JOB EARNINGS You have two summer jobs at a youth center. You earn \$8 per hour teaching basketball and \$10 per hour teaching swimming. Let x represent the amount of time (in hours) you teach basketball each week, and let y represent the amount of time (in hours) you teach swimming each week. Your goal is to earn at least \$200 per week.

- · Write an inequality that describes your goal in terms of x and y.
- · Graph the inequality.
- · Give three possible combinations of hours that will allow you to meet your goal.

Oct 6-4:33 PM Oct 30-4:48 PM